

TECHSPRING Stratford 21/10/2009

Mark Hayes, Project Manager

Partners

Trade Associations

ANCCEM, Italy DSA, The Nethelands

<u>SMEs</u>

Wire supplier, Joh. Pengg, Austria Springmakers, Mevis, Turton, and Metalpol, High speed camera expert, Lake, UK and Eire Residual stress expert, Peen Services, Italy

Research Providers IST and Innotec, Germany

Stress Analysis of Springs

Improvements to CAD Other methods – when should springmakers use them? **Finite Element Analysis** MKS **Residual stress analysis** Strain gauges High speed camera Non-axial force testing Higher strength spring wires

Results See www.spring-tech.eu

- a) Techspring reports 1 26 on website at end of project.
- b) Techspring CAD software see v.8
- c) Training supplied, Italy (2), Netherlands(2), Poland, Germany, France, UK
- d) Conference papers, Nagoya, Leoben, Stratford & Istanbul

Project ends November 30th 2009

<u>Reports</u>

- 1 Loop size vs. fatigue
- 2 Effect of initial tension on fatigue
- 3 Peening of stainless steel ext spring hooks
- 4 Effect of Prestressing on fatigue of
- compression springs
- 5A Stress Profile in larger wires
- 6 Speed of loading vs. fatigue life
- 7 Stress relief LTHT vs. fatigue life
- 8 Torsion spring fatigue
- 9 Push-pull springs

Reports

- 10 Speed of Production
- 11 Effect of hooks in extension springs
- 12 Effect of prestressing on dimensions and fatigue
- 13A Effect of leg type on torsion springs
- 14 Effect of non-axial forces, grinding, plating
- 15 End coil failures
- 16 Push-pull springs
- 17A Effect of high tensile wire
- 18A Shot peening appearance
- 19 Speed of testing

Reports

- 20A Use of strain gauges for dynamic stress measure.
- 20B Non-axial resonances in compression springs
- 20C Use of strain gauges for torsion spring stresses
- 21 Stress relief heat treat of carbon steel comp. springs
- 22 FEA of a suspension spring
- 23 FEA of a spring clip
- 24 Effect of stress relief on stainless steel comp springs
- 25 Extension spring hook deflections elastic / plastic
- 26 Hot coiled vs. cold coiled processes for large compression springs

Reports

- 2 Effect of initial tension on fatigue
- 3 Peening of stainless steel ext spring hooks
- 11 Effect of hooks in extension springs
- CAD programs can include hook fatigue data as a result of Techspring, but these data need to be tested by a wider community of springmakers.
- A new project in which static and dynamic stress limits are investigated for compression, extension and torsion springs is appropriate.

THE EFFECT OF INITIAL TENSION STRESS ON EXTENSION SPRING ELASTIC LIMIT AND FATIGUE PERFORMANCE

Report 2 showed

Open Coiled – no initial tension elastic limit 180N

Min. Initial Tension – 5N

Max. Initial Tension – 30N

elastic limit 180N elastic limit 190N elastic limit 230N

THE EFFECT OF INITIAL TENSION STRESS ON EXTENSION SPRING ELASTIC LIMIT AND FATIGUE PERFORMANCE

Report 2 -springs tested from 45N load and 75mm stroke

Maximum Initial Tension

111,489	143,108	10 ⁶	10 ⁶	10 ⁶	10 ⁶	78,297	-

Minimum Initial Tension

93,382	96,095	298,215	125,448	191,199*	116,418	10 ⁶	139,479
,	,	,	,	,	,		,

Slightly Open Coiled

75,737	89,330	98,455	114,164	166,420*	392,811	636,395	10 ⁶
--------	--------	--------	---------	----------	---------	---------	-----------------

The minimum life was independent of initial tension

THE EFFECT OF INITIAL TENSION STRESS ON EXTENSION SPRING ELASTIC LIMIT AND FATIGUE PERFORMANCE

Report 2 showed that

- 1. Elastic limit was greater when initial tension was large.
- 2. Stress range was the main influence on fatigue performance

EFFECT OF SHOT PEENING ON STAINLESS STEEL EXTENSION SPRINGS

Report 3 1.23mm diameter 302 stainless ext springs with crossover hooks, peened with glass beads

Body stress range /MPa	Life without shot peening	Life with peening
200 – 750 (14 – 52N) 200 – 700 (14 – 48.5N) 200 – 650 (14 – 45N) 200 – 600 (14 – 41.5N) 200 – 550 (14 – 38N)	21.8k H, 23.3k H 27.6k H, 29.9k H 26.7k H, 46.0k H 44.1k H, 44.2k H 2 @ 1m	53.4k H, 64.1k B 81.4k H, 114.6k B 189k B, 196k B 4 @ 1m

H = Failure in the hook B = Failure at the sharp bend at the base of the hook

Peening was beneficial

Extension Spring Hooks Report 11 showed

How small hook needs to be so that the fatigue failure is in the body rather than the hook

Extension Spring Hooks

Report 11 showed

2A	Lengths	Body stress/ MPa	Loop stress/ MPa	Fatigue lives/k cycles
	173 – 327	177 – 715	282 – 1142	91 ^L 94 ^L 119 ^L 10 ⁶
	173 – 348	177 – 789	282 – 1259	48 ^L 50 ^L 53 ^L 73 ^L

2B	Lengths	Body stress/ MPa	Loop stress/ MPa	Fatigue lives/k cycles
	165 – 313	177 – 715	251 – 1017	141 ^B 143 ^B 193 ^L 10 ⁶
	165 – 334	177 – 792	251 – 1126	63 ^L 86 ^B 96 ^B 107 ^B

2C	Lengths	Body stress/ MPa	Loop stress/ MPa	Fatigue lives/k cycles
	160 – 300	178 – 722	226 – 916	149 ^B 189 ^B 2 x 10 ⁶
	160 – 320	178 – 800	226 – 1014	130 ^B 131 ^B 139 ^B 152 ^B

Extension Spring Hooks

Report 11 enabled Goodman diagrams for end hooks

Conclusions

- Techspring has answered many questions about extension springs, and other spring types too.
- Use of FEA or MKS is seldom justified.
- Use of residual stress analysis can provide confidence to springmakers that their processes are optimised.
- Classical mechanics formulae for stress are adequate except for extension spring rate, torsion spring stress.
- Use of strain gauges enables confirmation of applied stresses even under dynamic conditions.
- CAD programs have been improved

