

Tech-Spring Report 6 EFFECT OF SPEED OF LOADING ON FATIGUE LIFE

A batch of Compression Springs made from EN 10270-1 DH wire was supplied with the design shown in Figure 1. It is generally assumed that if springs are dynamically tested at a speed less than 1/13 of their natural frequency, then the speed of testing will not affect the life to failure. At higher speeds than 1/13 of natural frequency there will be additional stresses due to the dynamic loading and the fatigue performance will be reduced. The natural frequency of these springs was 48,436. The test speeds selected were 1/16 and 1/96 of this frequency i.e. 3000rpm and 500rpm. The springs were prestressed to 8.9mm prior to dynamic testing.

The fatigue test results were:

Speed	Stress range / MPa	Unbroken	Life
3000rpm	352-1010	4	-
500rpm	352-1010	2	-
3000rpm	352-1062	-	220k, 450k, 1.1m, 3.6m
500rpm	352-1062	-	<580k, 2.3m, <2.6m, <2.6m

The 500rpm test speed led to IST's failure detection method to fail repeatedly, and so failure was only observed some time after actual failure.

All springs failed from the inside surface of their active coils.

Conclusion

Test speed has had no significant effect upon life to failure, but more testing is required to put statistical confidence on this result. Is further testing justified? Is this design appropriate for this investigation?

INSTITUTE OF SPRING TECHNOLOGY							Date:	22/08/2007 09:15:27
ldentifier: Details:	Spe 810	ed of loading s	priings					
Spring Type Round Wire Compression Designed To: BS 1726-1: 1987 Tolerance Standard: BS 1726-1: 2002				<u>c</u> s s s	<u>alculated Data</u> folid Length: folid Load: folid Stress:		6.58 87.26 1253.0	mm N N/mm^2
Material	1 Oarb	~~		S	tress Factor:		1.14	
Youngs Mod (E): Rigidity Mod (G): Density: Unprestress: Prestress:	JCan	206000 81500 .00000785 0-49 49-70	N/mm^2 N/mm^2 Kg/mm^3 %	S B B	pring Index: lelix Angle: luckling Possible luckling Definite:	•	9.71 9.32 STABLE STABLE 7.01	Deg
End Type: Dead Coils:	Closed and Ground 1.60			Inside Diameter: Mean Coil Dia.: Wire Length:			12.20 13.60 215.61	mm mm mm
Tip Thickness: End Fixation:		35.00 Both Ends Fix	% ed and Guided	V A	Veight / 100: Iatural Freq:		0.261 48436	Kg RPM
Design Parameters Wire Diameter: Outside Diameter: Total Coils: Spring Rate:		1.40 15.00 5.00 4.58	mm mm N/mm	(Calcul	ated)			
Free Lengin.		20.00	rrirri					
<u>Stress Data</u>			Opera	ting Pos	itions			
La Ten	wer sile	Solid	% Tensile 1	2	3	4		
SL 1 SM 1 DM 1 SH 2	620 870 870 110	77 O 67 P 67 P 59 P	35 U 30 U 30 U 27 U	63 P 55 P 55 P 49 U	22 U 19 U 19 U 17 U	66 P 57 P 57 P 50 P		
DH 2 Specified	110	59 P	27 U	49 U	17 U	50 P		
Operating Data								
			Opera 1	ting Pos	itions 3	А		
Length (mm) Load (N) Deflection (mm) Stress (N/mm^2) Stress % Solid			17.00 39.58 8.65 568 45	10.00 71.61 15.65 1028 82	20.30 24.48 5.35 352 28	9.49 73.95 16.16 1062 85		
Load Tol. Grade 1 (N) Load Tol. Grade 2 (N) O.D. Expansion (N)		3.62 5.43 0.136	4.26 6.40 0.247	3.32 4.98 0.0843	4.31 6.47 0.255			

Software Copyright @ 2002-2006 Institute of Spring Technology, Sheffield, UK (V7.43)

Figure 1